Hydrogel crosslinking density regulates temporal contractility of human embryonic stem cell-derived cardiomyocytes in 3D cultures.

نویسندگان

  • Cindy Chung
  • Erica Anderson
  • Renee Reijo Pera
  • Beth L Pruitt
  • Sarah C Heilshorn
چکیده

Systematically tunable in vitro platforms are invaluable in gaining insight to stem cell-microenvironment interactions in three-dimensional cultures. Utilizing recombinant protein technology, we independently tune hydrogel properties to systematically isolate the effects of matrix crosslinking density on cardiomyocyte differentiation, maturation, and function. We show that contracting human embryonic stem cell-derived cardiomyocytes (hESC-CMs) remain viable within four engineered elastin-like hydrogels of varying crosslinking densities with elastic moduli ranging from 0.45 to 2.4 kPa. Cardiomyocyte phenotype and function was maintained within hESC embryoid bodies for up to 2 weeks. Interestingly, increased crosslinking density was shown to transiently suspend spontaneous contractility. While encapsulated cells began spontaneous contractions at day 1 in hydrogels of the lowest crosslinking density, onset of contraction was increasingly delayed at higher crosslinking densities up to 6 days. However, once spontaneous contraction was restored, the rate of contraction was similar within all materials (71 ± 8 beats/min). Additionally, all groups successfully responded to electrical pacing at both 1 and 2 Hz. This study demonstrates that encapsulated hESC-CMs respond to 3D matrix crosslinking density within elastin-like hydrogels and stresses the importance of investigating temporal cellular responses in 3D cultures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Rosmarinic Acid in Neural Differentiation of Wartons Jelly-derived Mesenchymal Stem Cells in Two Dimensional and Three Dimensional Cultures using Chitosan-based Hydrogel

Numerous studies have shown the positive effects of rosmarinic acid on the nervous system. Rosmarinic acid as a herbal compound with anti-inflammatory effects can prevent the destructive effect of inflammation on the nervous system. Furthermore, various studies have emphasized the advantages of three dimensional (3D) culture over the two dimensional (2D) culture of cells. In this study, thermos...

متن کامل

The Effect of Cardio Gel and Matrigel on the Ultrastructure of Cardiomyocytes Derived From Mouse Embryonic Stem Cells

Purpose: To investigate the effect of cardiogel and matrigel on the ultrastructure of embryonic stem cell-derived cardiomyocytes. ECM: Extracellular Matrix derived from cardiac fibroblasts (cardiogel), commercial extracellular matrix (matrigel) and control group (without ECM) were cultured for up to 21 days. Ultrastructural properties of cardiomyocytes were evaluated by transmitting electron mi...

متن کامل

Genetically Engineered Mouse Embryonic Stem Cell – derived Cardiomyocytes as a Suitable Model on Drugs Toxicity In vitro

Background DOX is a powerful chemotherapeutic agent used in the treatment of solid tumors and malignant hematological diseases. However, its cardiac toxicity limits the clinical usefulness of this drug. Previous reports have shown Corticosteroids induce a cytoprotective effect on cardiomyocytes. Mouse transgenic embryonic stem cell-derived pure cardiomyocytes may be considered as a model for a...

متن کامل

Co-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice

Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...

متن کامل

Embryonic stem cells derived cardiomyocytes are a suitable model for assessment of cardiotoxic effects of doxorubicin and other drugs

Introduction: Doxorubicin is frequently used for treatment of several types of cancer. Doxorubicin cardiac toxicity has limited the use of this drug. Corticosteroids may prevent doxorubicin induced cardiotoxicity. Therefore the aim of this study was to evaluate mouse embryonic stem cells derived cardiomyocytes as a model to evaluate the effect of Doxorubicin and dexamethasone. Methods: Mouse ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 8 39  شماره 

صفحات  -

تاریخ انتشار 2012